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Abstract

Summary: We present PrInCE, an R/Bioconductor package that employs a machine-learning approach to infer pro-
tein–protein interaction networks from co-fractionation mass spectrometry (CF-MS) data. Previously distributed as a
collection of Matlab scripts, our ground-up rewrite of this software package in an open-source language dramatically
improves runtime and memory requirements. We describe several new features in the R implementation, including
a test for the detection of co-eluting protein complexes and a method for differential network analysis. PrInCE is ex-
tensively documented and fully compatible with Bioconductor classes, ensuring it can fit seamlessly into existing
proteomics workflows.

Availability and implementation: PrInCE is available from Bioconductor (https://www.bioconductor.org/packages/
devel/bioc/html/PrInCE.html). Source code is freely available from GitHub under the MIT license (https://github.com/
fosterlab/PrInCE). Support is provided via the GitHub issues tracker (https://github.com/fosterlab/PrInCE/issues).

Contact: foster@msl.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many biological functions are carried out by complex and dynamic
networks of interacting proteins. Mapping the complete network of
protein–protein interactions (PPIs)—the ‘interactome’—has been a
central objective of high-throughput biology. Traditionally, efforts
to this end relied on labor-intensive techniques such as yeast two-
hybrid (Y2H) and affinity purification-mass spectrometry (AP-MS).
More recently, CF-MS has emerged as a powerful strategy for inter-
actome mapping based on fractionation of protein complexes
according to their biophysical properties, followed by quantitative
proteomic analysis of each fraction. Key advantages of CF-MS in-
clude its high throughput, its power to map interactomes in their na-
tive cellular or physiological contexts, and its ability to monitor
interactome rearrangements in response to stimulation.

Over the past eight years, we have distributed and maintained
collections of freely available Matlab scripts for CF-MS data ana-
lysis (Kristensen et al., 2012; Scott et al., 2015). In 2017, we refined
and expanded these scripts into a supervised machine-learning pipe-
line for PPI prediction from CF-MS data, forming the first release of
PrInCE (Stacey et al., 2017). However, the distribution of this work-
flow in Matlab—a closed-source, commercial language—repre-
sented a barrier to wider uptake. Here, we present an open-source

implementation of PrInCE in the R programming language, distrib-
uted through the Bioconductor software project. This new release of
PrInCE is substantially faster and more lightweight, and includes
several new functionalities that enable new avenues of CF-MS data
analysis.

2 The PrInCE R package

PrInCE employs a supervised classification approach to infer PPIs
from CF-MS data. Briefly, after fitting a mixture of Gaussians to
each chromatogram and discarding low-quality profiles, a set of five
features is calculated for each potential interacting protein pair
(Fig. 1a). These features are provided as input to a machine-learning
classifier, alongside a set of reference protein complexes. Protein
pairs are ranked by their mean classifier score in ten-fold cross-valid-
ation, to avoid data leakage for complexes in the training set, and a
precision–recall curve is calculated. The complete ranked list of all
protein pairs can be subset to a user-specified precision threshold. A
complete description of the PrInCE workflow is included in the
Supplementary Information.

A comparison of networks inferred from four CF-MS datasets
(Scott et al., 2017) confirmed that the R implementation of PrInCE
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yielded similar results to the previous Matlab version (Fig. 1b) and
substantially outperformed a random classifier (Supplementary Fig.
S1). However, this new version of PrInCE was substantially more ef-
ficient, displaying a 91% increase in speed and a 26% decrease in
peak memory use (Fig. 1c). This increased efficiency could be attrib-
uted primarily to an increase in the efficiency of the Gaussian fitting
(Supplementary Fig. S2), and opens up the possibility of larger-scale
analyses using only a laptop computer. For example, we used
PrInCE to re-analyze a human CF-MS dataset, with a total of 11
replicates and 1198 fractions, from a large-scale study (Wan et al.,
2015) in only 4.5 h, using 11.1 GB of RAM. The same analysis
could not be completed in Matlab with 32 GB of RAM.

Beyond improvements in computational efficiency, the PrInCE R
package also includes new functionality for CF-MS data analysis.
First, we adapted a test previously described for thermal proximity
co-aggregation data (Tan et al., 2018) to identify protein complexes
with statistically significant co-elution signatures, implemented in
the ‘detect_complexes’ function. For protein complexes with at least
three subunits, the median correlation between all subunits is com-
puted, and compared to 100 shuffled complexes of equal size.
Applying this test to cytoplasmic and mitochondrial CF-MS data
(Scott et al., 2017) clearly distinguished these two compartments on
the basis of their protein complexes (Fig. 1d).

PrInCE also implements an autocorrelation-based method (Kerr
et al., 2020) to identify proteins whose interactions are ‘rewired’ in
response to stimulation, in comparative CF-MS datasets. Briefly, for
a given protein, the Pearson correlation to all other proteins in the
dataset is calculated in each condition separately, yielding two vec-
tors of correlation coefficients. These two vectors are compared to
one another to produce the autocorrelation. Low autocorrelation
values are indicative of proteins whose interaction profiles are
rewired between conditions, whereas high autocorrelation values re-
flect consistent elution profiles. To demonstrate this test, imple-
mented in the ‘calculate_autocorrelation’ function, we applied it to
CF-MS data collected before and after RNAse treatment (Mallam
et al., 2019), and confirmed that known RNA-binding proteins were
significantly enriched among proteins with a low autocorrelation
(Fig. 1e and f).

Last, PrInCE implements several new classifiers in addition to
the previously described naive Bayes model, including random for-
ests, support vector machines and logistic regression, as well as the
option to aggregate results from an ensemble of different classifiers.
While the optimal choice of classifier may vary from one dataset to
another, the ensemble option has the advantage that false positive
interactions specific to a particular classifier will tend to be down-
weighted in the aggregate rankings.

3 Conclusions

Through a ground-up rewrite of its Matlab predecessor, we have
developed a fully open-source implementation of PrInCE that inter-
faces seamlessly with existing proteomics workflows in the
Bioconductor project. Extensive documentation and tutorial
vignettes are included in PrInCE to guide users through its major
functionalities. Importantly, unlike other tools for CF-MS data ana-
lysis (Hu et al., 2019), PrInCE does not consider any external data
sources (e.g. gene coexpression or coevolution) in network infer-
ence, increasing its ability to discover novel interactions (Skinnider
et al., 2018). However, the performance of PrInCE depends on both
the amount and quality of CF-MS training data, and the number of
known protein complexes used to train the classifier. We hope that
PrInCE will provide a useful resource for the systems biology and
computational proteomics communities.
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Fig. 1. Functionality of the PrInCE R package. (a) Schematic overview of the features calculated by PrInCE for each possible pair of interacting proteins. (b) Comparison of

ranks assigned by the R and Matlab implementations of PrInCE to 10 157 866 candidate protein–protein interactions in cytoplasmic and mitochondrial membrane CF-MS

data from Jurkat T cells before and after Fas-mediated apoptosis (Scott et al., 2017). The CORUM database of protein complexes (Giurgiu et al., 2019) was used to train both

sets of classifiers. (c) Time and memory requirements of PrInCE analysis in R and Matlab for the four networks shown in panel (b). (d) Protein complexes from the CORUM

database detected in cytoplasmic versus mitochondrial CF-MS data using the ‘detect_complexes’ function in PrInCE. Z-scores quantify the strength of protein complex co-elu-

tion signatures compared to 100 randomly shuffled sets of complexes. Only complexes with a z-score � 1.96 in at least one replicate are shown. (e) Gene set enrichment ana-

lysis (GSEA) of RNA-binding proteins (RBPs) from the RBPDB database (Cook et al., 2011), applied to autocorrelation scores computed fromcomparative CF-MS data before

and after RNAse treatment (Mallam et al., 2019). (f) GSEA P-values for two CF-MS datasets and two RBP databases after RNAse treatment, as calculated using the ‘fgsea’

package
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